Targeted co-delivery of Beclin 1 siRNA and FTY720 to hepatocellular carcinoma by calcium phosphate nanoparticles for enhanced anticancer efficacy
نویسندگان
چکیده
Purpose FTY720, known as fingolimod, is a new immunosuppressive agent with effective anticancer properties. Although it was recently confirmed that FTY720 inhibits cancer cell proliferation, FTY720 can also induce protective autophagy and reduce cytotoxicity. Blocking autophagy with Beclin 1 siRNA after treatment with FTY720 promotes apoptosis. The objective of this study was to enhance the anticancer effect of FTY720 in hepatocellular carcinoma (HCC) by targeted co-delivery of FTY720 and Beclin 1 siRNA using calcium phosphate (CaP) nanoparticles (NPs). Materials and methods First, the siRNA was encapsulated within the CaP core. To form an asymmetric lipid bilayer structure, we then used an anionic lipid for the inner leaflet and a cationic lipid for the outer leaflet; after removing chloroform by rotary evaporation, these lipids were dispersed in a saline solution with FTY720. The NPs were analyzed by transmission electron microscopy, dynamic light scattering and ultraviolet-visible spectrophotometry. Cancer cell viability and cell death were analyzed by MTT assays, fluorescence-activated cell sorting analysis and Western blotting. In addition, the in vivo effects of the NPs were investigated using an athymic nude mouse subcutaneous transplantation tumor model. Results When the CaP NPs, called LCP-II NPs, were loaded with FTY720 and siRNA, they exhibited the expected size and were internalized by cells. These NPs were stable in systemic circulation. Furthermore, co-delivery of FTY720 and Beclin 1 siRNA significantly increased cytotoxicity in vitro and in vivo compared with that caused by treatment with the free drug alone. Conclusion The CaP NP system can be further developed for co-delivery of FTY720 and Beclin 1 siRNA to treat HCC, enhancing the anticancer efficacy of FTY720. Our findings provide a new insight into HCC treatment with co-delivered small molecules and siRNA, and these results can be readily translated into cancer clinical trials.
منابع مشابه
Application of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملBiocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors
Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid ...
متن کاملRap2b siRNA significantly enhances the anticancer therapeutic efficacy of Adriamycin in a gold nanoshell-based drug/gene co-delivery system
Rap2b is a novel p53 target we have identified recently. Knockdown of Rap2b sensitizes HCT116 cells to adriamycin-induced apoptosis, indicating that Rap2b promotes adriamycin resistance in cancer cells. In the present study, we designed a nanostructure-based drug/gene delivery system to evaluate the potential of Rap2b siRNA as a therapeutic agent against human cancers. Specifically, after co-in...
متن کاملSuperparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy
Introduction A safe and effective in vivo siRNA delivery system is a prerequisite for liver tumor treatment based on siRNA cancer therapeutics. Nanoparticles based on superparamagnetic iron oxide (SPIO) provide a promising delivery system. In this study, we aimed to explore a novel nanoparticle, which is composed of SPIO. Materials and methods The particles have a core of iron oxide that is m...
متن کاملPolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery
Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018